
What's new in NextZXOS v2.08

This document describes the main new features in NextZXOS v2.08. It is mainly
intended for those people who have previously been using v2.07 and want to know
what's changed.

If you are new to NextZXOS and NextBASIC, all the information in this document
is also integrated into the main documentation files:

NextBASIC_File_Commands.pdf
NextBASIC_New_Commands_and_Features.pdf
NextZXOS_Editor_Features.pdf
NextZXOS_and_esxDOS_APIs.pdf

Page 1 of 19

Variables
Any variable (strings, arrays, loop indexes) can now have a long name. This does
not apply to integer variables which are still pre-allocated single-letter names
only.

A new PRIVATE statement is provided for use by procedures and subroutines. This
works in the same way as LOCAL except that the variable retains its last value
on subsequent calls. The initial values of all PRIVATE variables can be reset
(to zero, or the default value given in the PRIVATE statement) with the PRIVATE
CLEAR command.

If the PRIVATE CLEAR command is executed from within banked code, the privates
for that bank are reset; otherwise, the privates for the main program are reset.

Only numeric PRIVATE variables are supported.

eg.
100 PRIVATE CLEAR
110 FOR i=1 TO 10:PROC iterate():NEXT i:STOP
120 DEFPROC iterate()
130 PRIVATE callcount=0
140 callcount=callcount+1
150 PRINT “I have been called “;callcount;” times”
160 ENDPROC

Page 2 of 19

Labels

Labels have now been added. These start with @ and follow the same naming
conventions as procedures. They may occur anywhere in the program. GOTO, GOSUB,
RESTORE, LIST, BANK..LIST, SAVE..LINE and EXIT all support label targets, eg:

100 RETURN: @alice: PRINT “At @alice”
GOTO @bob
GOSUB @cyril
LIST @david$
BANK 20 LIST @emma
EXIT @fred
SAVE “program” LINE @gerald

NOTE: For SAVE..LINE @label, the saved program will autostart at the start of
the line containing the label, even if the label is not at the start.

Page 3 of 19

Loops

A new EXIT command is now provided to cleanly exit from the current FOR or
REPEAT loop. This is the recommended way to exit from loops - GOTO should not be
used. EXIT on its own will jump to the first statement after the end of the
loop; it can alternatively specify an optional line number (or label). eg:

100 REPEAT
110 INPUT n
120 IF n=33 THEN EXIT 150

 130 REPEAT UNTIL n<0
140 PRINT “Loop completed normally”:STOP
150 PRINT “Loop ended early”:STOP

EXIT can be used to exit from multiple levels of nested loops. To do this, use
one EXIT statement per level on the same line. The final EXIT (only) may include
an optional line number/label. eg:
 100 FOR i=1 TO 10
 110 FOR j=i TO 10
 120 PRINT i,j
 130 IF j*i>80 THEN EXIT:EXIT 170
 140 NEXT j
 150 NEXT i
 160 STOP
 170 PRINT “Product exceeded 80”:STOP

Page 4 of 19

Conditional flow structures

A long-form IF..ELSE..ENDIF is now provided. This allows properly-nested
conditions, unlike the single-line IF..THEN..ELSE.

The format is as follows. IF, ELSE and ENDIF must each be the first statement of
a line. No THEN statement is used in the IF (this is what determines whether it
is a short-form or long-form IF). ELSE and ELSE IF clauses are optional; you can
have as many ELSE IFs as you want.

100 IF x>7:PRINT “x>7”
105 IF x>1000:PRINT “In fact it's huge”
110 ELSE PRINT “But not too big”
115 ENDIF

 120 ELSE IF x>3:PRINT “x>3 but x<=7”
 140 ELSE IF x=3:PRINT “x=3”
 160 ELSE

170 PRINT “x is too small to bother with”
 180 ENDIF

Page 5 of 19

Selection structures

ON n:<stmt0>:<stmt1>:<stmt2>:...:<stmtlast>:ELSE <statements>

A new ON n command is provided. This rounds n to the nearest integer and
executes the nth statement on the same line following the ON (starting with
statement 0). After executing the single statement, the rest of the line is
skipped and the following line is executed (unless the statement was a non-
returning jump such as GOTO, EXIT, RETURN or ENDPROC).

If ON ran out of statements before n was matched (or n was negative) and the
optional ELSE clause is present, all statements following the ELSE will be
executed.

eg:
100 ON x:PROC xwaszero():GOSUB @xwasone:GOTO @xwastwo:ELSE BEEP 1,0:PRINT

“x was > 2”

Page 6 of 19

Procedures

Procedure names may now include a trailing '$' symbol if desired; this has no
effect on functionality.

DEFPROC statements can now appear anywhere in the program; they no longer have
to be the first statement in a line.

Arrays (string, numeric and integer) can now be passed as procedure parameters,
or created as LOCALs. The syntax for this is the array name followed by ().
LOCAL arrays (except integer arrays) need to be DIMmed before use. eg:

100 PROC x(a(),size,2) TO result:PRINT result:STOP
110 DEFPROC x(inp(),size,y)
120 LOCAL z(),tot
130 DIM z(size)
140 tot=0
150 FOR i=1 TO size:z(i)=inp(i)*y:NEXT i
160 FOR i=1 TO size:tot=tot+z(i):NEXT i
170 ENDPROC = tot

Default values can now be provided in DEFPROC or LOCAL statements. A PROC can
omit any parameter if the matching DEFPROC has a default value in that position.
eg:

100 PROC x(12,,”bob”):STOP
110 DEFPROC x(a=1,b$=”alice”,c$,d=-5)
120 LOCAL e=3
130 PRINT a,b$,c$,d,e
140 ENDPROC

will output: 12, alice, bob, -5 and 3.

Parameters can also now be passed by reference. This is mainly intended for
arrays, as the default of passing-by-value will be slower (and consume more
memory), but it can also be useful for strings. It is not recommended for
numeric variables, which are faster if passed by value. Any changes made to a
value passed by reference will of course be seen by the caller. The REF keyword
is used in the DEFPROC to make a parameter a reference; such parameters must be
passed by the calling PROC as a variable/array name only. It is not permitted to
have default values for REFerenced parameters. eg:

100 PROC tl$(x$(),5):STOP
110 DEFPROC tl$(REF inp$(),index=1)
120 input$(index)=inp$(index)(2 TO)
130 ENDPROC

Note: Integer variables and arrays can not be passed by reference.

PROCs may call DEFPROCs with more parameters than the DEFPROC requires. In this
case, if the DEFPROC has the keyword DATA as its final parameter, the procedure
may read the additional parameters one at a time using READ. The new function
DATA can be used to determine if there are further PROC parameters left to read.
eg:

100 PROC printem(“Digits”,0,1,2,3,4,5,6,7,8,9):STOP
110 DEFPROC printem(name$, DATA)
115 LOCAL n
120 PRINT name$
130 REPEAT: WHILE DATA
140 READ n:PRINT n
150 REPEAT UNTIL 0
160 ENDPROC

Page 7 of 19

User-defined functions

User-defined functions now work similarly to procedures, following the same
naming conventions and parameter-passing.

eg: DEF FN gladys(harold)=harold+2
 DEF FN ian$(REF jenny$(),index)=jenny$(index)

User-defined functions can now be recursive.

eg: DEF FN factorial(n)=n?(1,1,n*FN factorial(n-1))

The program can also be listed starting at any user-defined function:
LIST FN ian$()
BANK 20 LIST FN lydia()

Page 8 of 19

Assignments

Multiple assignments

Assignments now support multiple destinations. This could be used to swap the
contents of 2 variables without using an intermediate, or simply to assign
multiple variables in the same statement.

eg: LET x,y = y,x
a,b,c,d$,e$,f = 1,2,3,”xyz”,”zzz”,g*h

If there are more destinations than source expressions, the final source
expression is assigned to all the extra destinations. This makes it easy to
assign the same value to multiple variables in one go.

eg: a,b,c,d = 0

Accumulation assignments

Assignments may also be used using any of the binary arithmetic operators. This
performs the arithmetic operation between the destination and the source.

eg: a += 1
LET x$ += “...”
x -= dx
y$ *= 2

The full list of accumulation assignments is as follows.

For numeric destinations (all requiring a numeric source):
+=
-=
*=
/=
^=
&=
|=
^|=
<<=
>>=
MOD=

For string destinations:
+= string concatenation: takes a string source
*= string replication: takes a numeric source

Accumulation assignments may be performed with multiple destinations as well.

eg: x,y,z >>= 1
a$,b$ += c$,d$

Page 9 of 19

Standard expression evaluator

The PEEK$ and BANK..PEEK$ functions have now been properly moved into the
standard expression evaluator, and so can be used as part of any string
expression (previously they were only allowed in a LET statement).

Many new functions and operators have been added to the standard (non-integer)
expression evaluator.

New functions

DPEEK addr
BANK n PEEK addr
BANK n DPEEK addr
REG n
SPRITE s
SPRITE CONTINUE s
SPRITE AT(s,c)
SPRITE OVER(s, start [TO end] [, overlapXY [, overlayY]])

These functions all work the same way as the existing ones in the integer
expression evaluator. DPEEK no longer gives different results from PEEK since
the function is now implemented in the main 48K BASIC ROM (ROM3) - the same is
also true of %DPEEK.

RND(n)
Returns a random integer between 0 and n-1 (like %RND n in the integer
expression evaluator). This is recommended over using the standard fractional
floating-point function RND since it doesn't suffer from the biasing inherent in
converting a fractional random number to an integer with multiply and truncation
steps.

DATA
Returns: 1 if the next DATA item (or PROC parameter to be read) is numeric

2 if the next DATA item (or PROC parameter to be read) is a string
0 if there are no further DATA items (or PROC parameters)

ERROR
Returns last error code

ERROR(n)
Returns: last error code (if n=0)

line number where last error occurred (if n=1)
statement number where last error occurred (if n=2)
bank number where last error occurred (if n=3)

ERROR$
Returns last error message

TIME
Returns the current value of the system variable FRAMES. Intended for use in
timing operations (see new TIME command later).

TIME$
Returns the current date and time (in the same format as shown on menus, with
the addition of a seconds field). If there is no RTC, returns an empty string.
eg TIME$ returns “2020-10-10 18:41:03”

Page 10 of 19

POINT #n
Returns the current stream pointer for stream n

NEXT #n
Returns the next character from stream n (waiting until the char is available)

DIM #n
Returns the extent (size) of stream n

DIM(arrayname[$]() [, dimension])
Returns the number of elements in the specified dimension of the array
(dimension defaults to 0 if not specified).

If dimension=0, instead returns the number of dimensions in the array.

Simple strings are treated as single-dimension character arrays, returning 1 as
the number of dimensions and the current string length as the number of elements
in dimension 1.

eg: For an array previously declared with DIM a(100,10,5):
DIM(a()) gives 3
DIM(a(),1) gives 100
DIM(a(),2) gives 10
DIM(a(),3) gives 5

STR$(n, base [, places])
Returns a string representation of number n in the specified base (2-36). For
bases > 10, digits larger than 9 are represented with capital letters. If places
is present, then a fractional part of places digits is also output.
eg:

STR$(201.5, 16) gives “C9”
STR$(3.5, 2, 4) gives “11.1000”

IN(source$, match$ [, startpos[, wild$]])
Returns the character number where match$ was found in source$.

Optional startpos parameter determines the position within source$ to begin the
search (default=1).

If startpos is negative, the search starts from position ABS(startpos) and
proceeds backwards.

The value returned will be between 1 and LEN source$ if a match was found.
Returns 0 if match not found, startpos=0, match$=”” or source$=””.

Any characters in match$ which are the wildcard character will match any
character in source$.

The wildcard character is the first character of wild$, if present, or the
copyright symbol (ASCII 127) otherwise. If wild$=””, the wildcard character is
ASCII 0.

eg:
IN(“A very long string”,” “) gives 2
IN(“A very long string”,” “,3) gives 7
IN(“A very long string”,” “,-17) gives 12
IN(“A very long string”,”s**ing”,1,”*”) gives 13

Page 11 of 19

USR$ addr
BANK n USR$ offset
Calls the machine code routine at addr (or offset in bank n). Instead of
returning the 16-bit number found in BC (as with USR addr), it returns a string,
defined by the start address returned by the machine-code routine in DE and
length in BC.

USR(addr, param1[, param2 [, param3...]]])
USR$(addr, param1[, param2 [, param3...]]])
BANK n USR(addr, param1[, param2 [, param3...]]])
BANK n USR$(addr, param1[, param2 [, param3...]]])
As the single-argument USR functions, but multiple parameters can be passed to
the machine-code routine (instead of just the start address in BC).

If a single additional parameter (param1) is present, this is passed in BC (if
it is numeric) or as an address DE and length BC (if it is a string).

The type of the parameter passed to the routine is indicated by the zero flag:
if set, the parameter is a string (in DE,BC); if clear, the parameter is a
number in BC.

Additionally, the type of the expected result is indicated by the carry flag: if
set, the expected result is a number (in BC); if clear, the expected result is a
string (in DE,BC).

All further parameters are left on the calculator stack for the machine-code
routine to use with calculator operations or retrieve using standard ROM
routines such as FIND-INT1, FIND-INT2, STK-FETCH. On entry, A contains the
number of additional parameters on the calculator stack (0-16) and HL contains a
bitmask indicating the type of each parameter. Bit 15 indicates the type of the
final parameter (and will be the first to be retrieved from the calculator
stack), so types can be read by shifting each bit in turn to the carry flag with
ADD HL,HL. Type bits are 0 for string, 1 for numeric. Routines must remove all
additional parameters from the calculator stack, otherwise it will be unbalanced
and the expression may be calculated incorrectly.

Page 12 of 19

INPUT n
Reads the current state of an input controller.
If n=1 or 2, reads the state of joystick1 (left) or joystick2 (right).
If n=0, reads the state of the “keyboard joystick”.

In each case, the value returned is a bitmask of the following value:
bit 0 (value 1): set if right pressed
bit 1 (value 2): set if left pressed
bit 2 (value 4): set if down pressed
bit 3 (value 8): set if up pressed
bit 4 (value 16): set if fire pressed
bit 5 (value 32): set if fire2 pressed
bit 6 (value 64): set if fire3 pressed
bit 7 (value 128): set if fire4 pressed

eg
INPUT 1&8 returns false (0) if up is not pressed

on joystick 1, true (8 is non-zero) if it is
INPUT 0&BIN 11110000 returns false (0) if no fire buttons are pressed

on joystick 0, true (non-zero) if at least one is

The default “keyboard joystick” is:
up Q
down A
left O
right P
fire SPACE
fire2 M
fire3 ENTER
fire4 X

The “keyboard joystick” may be redefined with the INPUT function by specifying
negative values for n, as follows:

INPUT -1 waits for a key to be pressed and assigns to “right”
INPUT -2 waits for a key to be pressed and assigns to “left”
INPUT -3 waits for a key to be pressed and assigns to “down”
INPUT -4 waits for a key to be pressed and assigns to “up”
INPUT -5 waits for a key to be pressed and assigns to “fire”
INPUT -6 waits for a key to be pressed and assigns to “fire2”
INPUT -7 waits for a key to be pressed and assigns to “fire3”
INPUT -8 waits for a key to be pressed and assigns to “fire4”
INPUT -9 (or any other value) clears all assignments

The return value is the character code of the key pressed, which can be useful
if you want to display the key just defined (although some special keys have
codes below ASCII 32 which aren't PRINTable, so care should be taken).

eg
100 x=INPUT -9: REM clear the “keyboard joystick”
110 PRINT “Press a key for right”:x=INPUT -1
120 PRINT “Press a key for left”:x=INPUT -2
130 PRINT “Press a key for down”:x=INPUT -3
140 PRINT “Press a key for up”:x=INPUT -4
150 PRINT “Press a key for fire”:x=INPUT -5
160 REM Can leave additional fire buttons undefined if they aren't needed

Page 13 of 19

New operators

@n binary number n (same as BIN)
$n hex number n
!n bitwise not
n >> m shift right
n << m shift left
n | m bitwise or
n & m bitwise and
n ^| m bitwise xor
n MOD m modulus (remainder)

These operators are all the same as the ones in the integer expression
evaluator. However (apart from MOD, which always returns an integer), they all
work on the fractional parts of numbers as well as the integer parts. Hex and
binary numbers can also be written with fractional parts.
eg:

1>>1 gives 0.5
BIN 1.1 is the same as 1.5 (decimal)
@10.01 is the same as 2.25 (decimal)
$64.c is the same as 100.75 (decimal)

Note that the integer expression evaluator uses ^ for xor, but this operator is
already used in the standard expression evaluator for “to-the-power”. Hence ^|
is used instead (^| can also now be used in the integer expression evaluator).

n?(expr0,expr1,expr2...)
The select (?) operator rounds n to the nearest integer and uses it to choose
one of the following expressions. If n=0, expr0 is evaluated etc.
If there are not enough expressions in the list to select based upon n, the last
expression is always evaluated.
The expressions in the list may be numeric or string expressions, but they must
all be the same type.
eg:

3?(“alice”,”bob”,x$,”denzil”,y$+z$) gives “denzil”
5?(f/g,PI*2*r,200) gives 200

Page 14 of 19

a$*n
The multiply (*) operator can now be used for string replication. It takes a
string as the first operand and a number as the second operand, returning a
string. The sign of the number determines whether the result is mirrored or not.
eg:

“abcdefg”*2 gives “abcdefgabcdefg”
“abcdefg”*-1 gives “gfedcba”
“abcdefg”*1.5 gives “abcdefgabc”

a$[modifierlist]
Modifies the preceding string expression, according to which of the following
characters are present within the square brackets in the modifierlist:

+ convert lower-case letters to upper-case
- convert upper-case letters to lower-case
< strip leading spaces (and control characters)
> strip trailing spaces (and control characters)
~ strip bit-7 terminator from last character of string
^ add bit-7 terminator to last character of string
(f$,r$) replace any occurrences of characters present in f$ with

the corresponding character from r$ (or delete if there
is no corresponding character)

The order of the modifiers is unimportant, except for “(f$,r$)” which, if
present, must be the final modifier.

eg:
“ Hello There! ”[<+->]

gives: “hELLO tHERE!”

“My typewriter is broken”[(”nore”,”dro”)]
gives: “My typwoito is borkd”

Note that it is possible to slice a modified string, or modify a sliced string,
since both () and [] continue to be evaluated following a string argument until
there are no further opening parentheses or square brackets.

eg
a$(5)[-](3 TO 7)[<]

is perfectly valid.

{a$}
Tokenises (but does not syntax-check) the contents of the string expression
contained within the curly braces. This can be useful for more easily preparing
strings to be passed to VAL or VAL$.

eg:
{“sin (pi/4)”} gives a string “SIN (PI/4)”, including

the tokens SIN (code 178) and PI (code 167)

VAL{“sin (pi/4)”} gives 0.7071

Page 15 of 19

Integer expression evaluator

These new functions/operators from the standard expression evaluator are also
available in the integer expression evaluator:

n ^| m Bitwise xor (synonym of ^)

INPUT n Read/define input controllers

Integer expressions can also now be used as sub-expressions in the standard
expression evaluator. An integer sub-expression can be started after any opening
parenthesis or separating comma.

eg.
x$=STR$(%a, %b, 5)
x=apples*pears+(%x(3))

For the new BANK.. functions in the standard expression evaluator, the bank
number can be considered to be implicitly within parentheses, so it may be
specified using an integer expression directly.

eg
x=2*PI*BANK %b PEEK myaddress

Page 16 of 19

NextBASIC options

NextBASIC options are controlled by the special %CODE integer variable. This is
reset to zero when a program is loaded/run.

Currently available options are (bit 0 was already present in v2.07):

Bit Use
0 if set, %RND n and RND(n) return values between 0..n, rather than 0..n-1
1 if set, the BREAK key is disabled

Page 17 of 19

Miscellaneous commands

TIME
New command to reset the frame-counter (FRAMES) to 0. Intended for use with the
corresponding TIME function as a timer:

10 TIME
20 PROC perftest()
30 PRINT “perftest() took “;TIME;” frames”

LOAD/SAVE/VERIFY f$ INT
Load, save or verify all the integer variables and arrays.

LOAD/SAVE/VERIFY f$ INPUT
Load, save or verify the definition of the “keyboard joystick” (see INPUT n
function).

The following commands are no longer really needed, as equivalent functions have
now been added to the expression evaluator:

RETURN #n TO var
NEXT #n TO var
DIM #n TO var

Page 18 of 19

New keyword tokens
TIME $81
PRIVATE $82
IFELSE $83
(internal use only: displays as IF, but indicates ELSE is present on same line)
ENDIF $84
EXIT $85
REF $86

New errors
No ENDIF
No label

System variable changes
TARGET (5B58) is replaced with:
X1 5B58 23384 CACHEBNK 8K bank id holding cached program data.
N1 5B59 23385 Reserved for system use.

DEFADD (5C0B) is replaced with:
X2 5C0B 23563 RETVARS Address of local variables on return stack.

LISTSP, NSPPC and S_TOP (respectively) are replaced:
N2 5C3F 23615 Reserved for system use.
N1 5C44 23620 Reserved for system use.
N2 5C6C 23660 Reserved for system use.

Layout of long-named variables in memory
NOTE: Global variables only. Local variables are stored on the return stack and
probably beyond the scope of this documentation.

Long-named numeric variables (as before):
1st byte: 101 1st letter-60h
2nd-(N-1)th bytes: 2nd-(N-1)th letter/digit
Nth byte: last letter/digit+80h

Long-named loop control variables:
1st byte: 101 1st letter-60h
2nd-(N-1)th bytes: 2nd-(N-1)th letter/digit
Nth byte: last letter/digit+80h-20h

Long-named strings and arrays:
1st byte: 011 11111 (7fh)
2nd byte: 010 1st letter-60h (strings)
2nd byte: 100 1st letter-60h (numeric arrays)
2nd byte: 110 1st letter-60h (character arrays)
3rd-Nth bytes: 2nd-(N-1)th letter/digit
(N+1)th byte: last letter/digit+80h

Page 19 of 19

